On the finite field Nullstellensatz
نویسندگان
چکیده
Let X c pn be an irreducible projective variety defined over the finite field F q. We will say that X satisfies the property F F N (k, q) (Finite Field Nullstellensatz of degree k over F q) if every homogeneous polynomial over F q of degree k on pn vanishing on X (F q) vanishes on X, that is, it vanishes at all points of X defined over the algebraic closure of F q . We study when FFN(k,q) holds true for the Veronese embeddings of pm, the Segre varieties, the minimal degree rational scrolls and the linearly normal embeddings of smooth curves.
منابع مشابه
Finite field Nullstellensatz and Grassmannians
Let X C ]p'N be a projective variety defined over the Galois field GF(q). Denote by X(q) the set of GF(q)-rational points of X. Let k be an integer. We say that the pair (X, X(q)) satisfies the Finite Field Nullstellensatz of order k, (the FFN(k), for short), if every homogeneous form of degree :::; k on r N (J<) vanishing on X (q), vanishes on X (J<). Here, we prove the Finite Field Nullstelle...
متن کاملOn the Finite Field Nullstellensatz for the intersection of two quadric hypersurfaces
braic scheme defined over a finite field GFðpÞ.X ðKÞwill denote the set of allK-points of X . For every power q of p with qd p let XðqÞ denote the set of all GFðqÞ-points of X . Hence XðqÞJX ðq 0Þ if q, q 0 are p-powers and q 0 d qd p. XðKÞ is the union of all XðqÞ, qg 0 and q a p-power. If X is reduced, then the scheme X is uniquely determined by the algebraic variety XðKÞ in the sense of Serr...
متن کاملQuantifier Elimination over Finite Fields Using Gröbner Bases
We give an algebraic quantifier elimination algorithm for the first-order theory over any given finite field using Gröbner basis methods. The algorithm relies on the strong Nullstellensatz and properties of elimination ideals over finite fields. We analyze the theoretical complexity of the algorithm and show its application in the formal analysis of a biological controller model.
متن کاملA Note on Alon’s Combinatorial Nullstellensatz
Alon’s Combinatorial Nullstellensatz (Theorem 1.1 from [2]), and in particular the resulting nonvanishing criterion (Theorem 1.2 from [2]) is a very useful algebraic tool in combinatorics. It has several remarkable applications, see [4], [5], [7], [9], [10], [14], [15] for some recent examples. It is a theorem on polynomial functions on a discrete box S = S1 × · · · × Sn, where Si, i = 1, . . ....
متن کاملExamples in finite Gel′fand-Kirillov dimension
Abstract By modifying constructions of Bĕıdar and Small we prove that for countably generated prime F -algebras of finite GK dimension there exists an affinization having finite GK dimension. Using this result we show: for any field there exists a prime affine algebra of GK dimension two that is neither primitive nor PI; for any countable field F there exists a prime affine F -algebra of GK dim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Australasian J. Combinatorics
دوره 21 شماره
صفحات -
تاریخ انتشار 2000